Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer

Modeling, Synthesis and Numerical Simulation of Non-Gaussian Random Processes with Application to Communications

A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems

Computational and Numerical Simulations in Science and Engineering: Complex Electromagnetic Problems and Numerical Simulation Approaches

Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer

This book constitutes the referred proceedings of two workshops held at the 32nd ACM International Conference on Supercomputing, ACM ICS 2018, in Beijing, China, in June 2018. This volume presents the papers that have been accepted for the following workshops: Second International Workshop on High Performance Computing for Advanced Modeling and Simulation in Nuclear Energy and Environmental Science, HPCMS 2018, and First International Workshop on HPC Supported Data Analytics for Edge Computing, HiDEC 2018. The 20 full papers presented during HPCMS 2018 and HiDEC 2018 were carefully reviewed and selected from numerous submissions. The papers reflect such topics as computing methodologies; parallel algorithms; simulation types and techniques; machine learning.

Modeling, Synthesis and Numerical Simulation of Non-Gaussian Random Processes with Application to Communications

This book aims to provide a lively working knowledge of the thermodynamic control of microscopic simulations, while summarizing the historical development of the subject, along with some personal reminiscences. Many computational examples are described so that they are well-suited to learning by doing. The contents enhance the current understanding of the reversibility paradox and are accessible to advanced undergraduates and researchers in physics, computation, and irreversible thermodynamics.

A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems

Over the past few decades, there has been numerous research studies conducted involving the synchronization of dynamical systems with several theoretical studies and laboratory experimentations demonstrating the pivotal role for this phenomenon in secure communications. Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption explores the combination of ordinary and time delayed systems and their applications in cryptographic encoding. This innovative publication presents a critical mass of the most sought after research, providing relevant theoretical frameworks and the latest empirical research findings in this area of study.

Computational and Numerical Simulations


Physical and Numerical Simulation of Materials Processing Numerical Simulation - from Theory to Industry is the edited book containing 25 chapters and divided into four parts. Part 1 is devoted to the background and novel advances of numerical simulation; second part contains simulation applications in the macro- and micro-electrodynamics. Part 3 includes contributions related to fluid dynamics in the natural environment and scientific applications; the last, fourth part is dedicated to simulation in the industrial areas, such as power engineering, metallurgy and building. Recent numerical techniques, as well as software the most accurate and advanced in treating the physical phenomena, are applied in order to explain the investigated processes in terms of numbers. Since the numerical simulation plays a key role in both theoretical and industrial research, this book related to simulation of many physical processes, will be useful for the pure research scientists, applied mathematicians, industrial engineers, and post-graduate students.

Communication and Computing Systems

High-Performance Computing Applications in Numerical Simulation and Edge Computing Numerical Simulations of Physical and Engineering Process is an edited book divided into two parts. Part I devoted to Physical Processes contains 14 chapters, whereas Part II titled Engineering Processes has 13 contributions. The book handles the recent research devoted to numerical simulations of physical and engineering systems. It can be treated as a bridge linking various numerical approaches of two closely inter-related branches of science, i.e. physics and engineering. Since the numerical simulations play a key role in both theoretical and application oriented research, professional reference books are highly needed by pure research scientists, applied mathematicians, engineers as well post-graduate students. In other words, it is expected that the book will serve as an effective tool in training the mentioned groups of researchers and beyond.

Contemporary Computing

The Numerical Simulation of Optical Fiber Communication Systems Unlike other analytic techniques, the Homotopy Analysis Method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications. Contents: Chance and Challenge: A Brief Review of Homotopy Analysis Method (S-J Liao) Predictor Homotopy Analysis Method (PHAM) (S Abbasbandy and E Shivanian) Spectral Homotopy Analysis Method for Nonlinear Boundary Value Problems (S Motsa and P Sibanda) Stability of Auxiliary Linear Operator and Convergence-Control Parameter (R A Van Gorder) A Convergence Condition of the Homotopy Analysis Method (M Turkyilmazoglu) Homotopy Analysis Method for Some Boundary Layer Flows of Nanofluids (T Hayat and M Mustafa) Homotopy Analysis Method for Fractional Swift- Hohenberg Equation (S Das and K Vishal) HAM-Based Package NPH for Periodic Oscillations of Nonlinear Dynamic Systems (Y-P Liu) HAM-Based Mathematica Package BVPh 2.0 for Nonlinear Boundary Value Problems (Y-L Zhao and S-J Liao) Readership: Graduate students and researchers in applied mathematics, physics, nonlinear mechanics, engineering and finance. Keywords: Analytic Approximation Method; Nonlinear; Homotopy; Applied Mathematics. Key Features: The method described in the book can overcome almost all restrictions of other analytic approximation method for nonlinear problems. This book is the first in homotopy analysis method, covering the newest advances, contributed by many top experts in different fields.

Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory - fractals and Lyapunov instability - are fundamental to the approach. Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers.
Modeling and Numerical Simulation of Fluid-Structure Interaction in Circle of Willis The main focus of the book is to implement wavelet based transform methods for solving problems of fractional order partial differential equations arising in modelling real physical phenomena. It explores analytical and numerical approximate solution obtained by wavelet methods for both classical and fractional order partial differential equations.

Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2012 Edition

Numerical Simulation Modeling and simulating biological and physical systems are nowadays active branches of science. The diversity and complexity of behaviors and patterns present in the natural world have their reciprocity in life systems. Bifurcations, solitons and fractals are some of these ubiquitous structures that can be indistinctively identified in many models with the most diverse applications, from microtubules with an essential role in the maintenance and the shaping of cells, to the nano/microscale structure in disordered systems determined with small-angle scattering techniques. This book collects several works in this direction, giving an overview of some models and theories, which are useful for the study and analysis of complex biological and physical systems. It can provide a good guidance for physicists with interest in biology, applied research scientists and postgraduate students.

Numerical Simulation of Space Plasmas Numerical simulation is a technique of major importance in various technical and scientific fields. Whilst engineering curricula now include training courses dedicated to it, numerical simulation is still not well-known in some economic sectors, and even less so among the general public. Simulation involves the mathematical modeling of the real world, coupled with the computing power offered by modern technology. Designed to perform virtual experiments, digital simulation can be considered as an "art of prediction". Embellished with a rich iconography and based on the testimony of researchers and engineers, this book shines a light on this little-known art. It is the second of two volumes and gives examples of the uses of numerical simulation in various scientific and technical fields: agriculture, industry, Earth and universe sciences, meteorology and climate studies, energy, biomechanics and human and social sciences.

Numerical Modeling and Computer Simulation

Communications in Nonlinear Science & Numerical Simulation This book deals with certain aspects of material science, particularly with the release of thermal energy associated with bond breaking. It clearly establishes the connection between heat transfer rates and product quality. The editors then sharply draw the thermal distinctions between the various categories of welding processes, and demonstrate how these distinctions are translated into simulation model uniqueness. The book discusses the incorporation of radiative heat transfer processes into the simulation model.

Simulation and Control of Chaotic Nonequilibrium Systems Nowadays mathematical modeling and numerical simulations play an important role in life and natural science. Numerous researchers are working in developing different methods and techniques to help understand the behavior of very complex systems, from the brain activity with real importance in medicine to the turbulent flows with important applications in physics and engineering. This book presents an overview of some models, methods, and numerical computations that are useful for the applied research scientists and mathematicians, fluid tech engineers, and postgraduate students.

Stochastic Methods and their Applications to Communications The International Conference on Communication and Computing Systems (ICCCS 2018) provides a high-level international forum for researchers and recent advances in the field of electronic devices, computing, big data analytics, cyber security, quantum computing, biocomputing, telecommunication, etc. The aim of the conference was to bridge the gap between the technological advancements in the industry and the academic research.

Mathematics—Advances in Research and Application: 2012 Edition Mathematics—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Mathematics. The editors have built Mathematics—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mathematics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Mathematics—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Numerical Simulations in Engineering and Science
Numerical Simulation of Optical Wave Propagation is solely dedicated to wave-optics simulations. The book discusses digital Fourier transforms (FT), FT-based operations, multiple methods of wave-optics simulations, sampling requirements, and simulations in atmospheric turbulence.

Numerical Modeling of Seismic Wave Propagation
This book is made up of selected papers from the Asia Simulation Conference 2007, held in Seoul, Korea, in October of 2007. The 42 revised full papers presented were carefully reviewed and selected from 120 submissions. After the conference, the papers went through another round of revision. The papers are organized in topical sections on a host of subjects. These include, among others, sections on numerical simulation, general application, and agent-based simulation.

Numerical Simulation of Communication Channel with Different Types of Fading

Time Reversability, Computer Simulation, Algorithms, Chaos

Proceedings, Fourth Conference on Numerical Simulation of Plasms
Information technologies have changed people's lives to a great extent, and now it is almost impossible to imagine any activity that does not depend on computers in some way. Since the invention of first computer systems, people have been trying to avail computers in order to solve complex problems in various areas. Traditional methods of calculation have been replaced by computer programs that have the ability to predict the behavior of structures under different loading conditions. There are eight chapters in this book that deal with: optimal control of thermal pollution emitted by power plants, finite difference solution of conjugate heat transfer in double pipe with trapezoidal fins, photovoltaic system integrated into the buildings, possibilities of modeling Petri nets and their extensions, etc.

Complexity in Biological and Physical Systems
Meshing, Geometric Modeling and Numerical Simulation
Today, engineering problems are very complex, requiring powerful computer simulations to power them. For engineers, observable-based parameterization as well as numerically computable forms with rapid convergent properties if in a series are essential. Complex Electromagnetic Problems and Numerical Simulation Approaches, along with its companion FTP site, will show you how to take on complex electromagnetic problems and solve them in an accurate and efficient manner. Organized into two distinct parts, this comprehensive resource first introduces you to the concepts, approaches, and numerical simulation techniques that will be used throughout the book and then, in Part II, offers step-by-step guidance as to their practical, real-world applications. Self-contained chapters will enable you to find specific solutions to numerous problems. Filled with in-depth insight and expert advice, Complex Electromagnetic Problems and Numerical Simulation Approaches: Describes ground wave propagation Examines antenna systems Deals with radar cross section (RCS) modeling Explores microstrip network design with FDTD and TLM techniques Discusses electromagnetic compatibility (EMC) and bio-electromagnetics (BEM) modeling Presents radar simulation Whether you're a professional electromagnetic engineer requiring a consolidated overview of the subject or an academic/student who wishes to use powerful simulators as a learning tool, Complex Electromagnetic Problems and Numerical Simulation Approaches - with its focus on model development, model justification, and range of validity - is the right book for you.

AsiaSim 2007
The main focus of this study is based on the numerical study of hemodynamics of blood and arterial wall behavior in Circle of Willis.

Numerical Simulation of Heat Exchangers
Computational science is one of the rapidly growing multidisciplinary fields. The high-performance computing capabilities are utilized to solve and understand complex problems. This book offers a detailed exposition of the numerical methods that are used in engineering and science. The chapters are arranged in such a way that the readers will be able to select the topics appropriate to their interest and need. The text features a broad array of applications of computational methods to science and technology. This book would be an interesting supplement for the practicing engineers, scientists, and graduate students.

Numerical Simulation of Optical Wave Propagation with Examples in MATLAB
Stochastic Methods & their Applications to Communications presents a valuable approach to the modelling, synthesis and numerical simulation of random processes with applications in communications and related fields. The authors provide a detailed account of random processes from an engineering point of view and illustrate the concepts with examples taken from the communications area. The discussions mainly focus on the analysis and synthesis of Markov models of random processes as applied to modelling such phenomena as interference and fading in communications. Encompassing both theory and practice, this original text provides a unified approach to the analysis and generation of continuous, impulsive and mixed random processes based on the Fokker-Planck equation.
equation for Markov processes. Presents the cumulated analysis of Markov processes Offers a SDE (Stochastic Differential Equations) approach to the generation of random processes with specified characteristics Includes the modelling of communication channels and interfer ences using SDE Features new results and techniques for the solution of the generalized Fokker-Planck equation Essential reading for researchers, engineers, and graduate and upper year undergraduate students in the field of communications, signal processing, control, physics and other areas of science, this reference will have wide ranging appeal.

Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations

Performance Evaluation of Single-Channel Receivers for Wireless Optical Communications by Numerical Simulations Computational and Numerical Simulations is an edited book including 20 chapters. Book handles the recent research devoted to numerical simulations of physical and engineering systems. It presents both new theories and their applications, showing bridge between theoretical investigations and possibility to apply them by engineers of different branches of science. Numerical simulations play a key role in both theoretical and application oriented research.

Numerical Simulation

Methods of Mathematical Modelling

Advances in the Homotopy Analysis Method Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2012 Edition is a ScholarlyEdition eBook that delivers timely, authoritative, and comprehensive information about Nonlinear Research. The editors have built Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2012 Edition on the vast information databases of ScholarlyNews. You can expect the information about Nonlinear Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2012 Edition has been produced by the world's leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Numerical Simulations of Physical and Engineering Processes

Numerical Simulation, An Art of Prediction, Volume 2 Engineering applications offer benefits and opportunities across a range of different industries and fields. By developing effective methods of analysis, results and solutions are produced with higher accuracy. Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer is an innovative source of academic research on the optimized techniques for analyzing heat transfer equations and the application of these methods across various fields. Highlighting pertinent topics such as the differential transformation method, industrial applications, and the homotopy perturbation method, this book is ideally designed for engineers, researchers, graduate students, professionals, and academics interested in applying new mathematical techniques in engineering sciences.

Direct Numerical Simulation for Turbulent Reacting Flows This book features original research articles on the topic of mathematical modelling and fractional differential equations. The contributions, written by leading researchers in the field, consist of chapters on classical and modern dynamical systems modelled by fractional differential equations in physics, engineering, signal processing, fluid mechanics, and bioengineering, manufacturing, systems engineering, and project management. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate level students, educators, researchers, and scientists interested in mathematical modelling and its diverse applications. Features Presents several recent developments in the theory and applications of fractional calculus Includes chapters on different analytical and numerical methods dedicated to several mathematical modelling and its diverse applications. Features Discusses real-world problems, theory, and applications

Special Section on Tipping Points: Fundamentals and Applications This volume constitutes the refereed proceedings of the Fourth International Conference on Contemporary Computing, IC3 2010, held in Noida, India, in August 2011. The 58 revised full papers presented were carefully reviewed and selected from 175 submissions.
Numerical Simulation in Science and Engineering Triangulations, and more precisely meshes, are at the heart of many problems relating to a wide variety of scientific disciplines, and in particular numerical simulations of all kinds of physical phenomena. In numerical simulations, the functional spaces of approximation used to search for solutions are defined from meshes, and in this sense these meshes play a fundamental role. This strong link between meshes and functional spaces leads us to consider advanced simulation methods in which the meshes are adapted to the behaviors of the underlying physical phenomena. This book presents the basic elements of this vision of meshing. These mesh adaptations are generally governed by a posteriori error estimators representing an increase of the error with respect to a size or metric. Independently of this metric of calculation, compliance with a geometry can also be calculated using a so-called geometric metric. The notion of mesh thus finds its meaning in the metric of its elements.

Complex Electromagnetic Problems and Numerical Simulation Approaches

This book collects recent developments in nonlinear and complex systems. It provides up-to-date theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers symmetry groups, conservation laws, risk reduction management, barriers in Hamiltonian systems, and synchronization and chaotic transient. Illustrating mathematical modeling applications to nonlinear physics and nonlinear engineering, the book is ideal for academic and industrial researchers concerned with machinery and controls, manufacturing, and controls. · Introduces new concepts for understanding and modeling complex systems; · Explains risk reduction management in complex systems; · Examines the symmetry group approach to understanding complex systems; · Illustrates the relation between transient chaos and crises.

Copyright code : 8f0b442c49f869109b54805e59652126