Design and Development of Aerospace Vehicles and Propulsion Systems New edition of the successful textbook updated to include new material on UAVs, design guidelines in aircraft engine component systems and additional end of chapter problems. Aircraft Propulsion, Second Edition follows the successful first edition textbook with comprehensive treatment of the subjects in airbreathing propulsion, from the basic principles to more advanced treatments in engine components and system integration. This new edition has been extensively updated to include a number of new and important topics. A chapter is now included on General Aviation and Uninhabited Aerial Vehicle (UAV) Propulsion Systems that includes a discussion on electric and hybrid propulsion. Propeller theory is added to the presentation of turboprop engines. A new section in cycle analysis treats Ultra-High Bypass (UHB) and Geared Turbofan engines. New material on drop-in biofuels and design for sustainability is added to reflect the FAA’s 2025 Vision. In addition, the design guidelines in aircraft engine components are expanded to make the book user friendly for engine designers. Extensive review material and derivations are included to help the reader navigate through the subject with ease. Key
features: General Aviation and UAV Propulsion Systems are presented in a new chapter Discusses Ultra-High Bypass and Geared Turbofan engines Presents alternative drop-in jet fuels Expands on engine components' design guidelines The end-of-chapter problem sets have been increased by nearly 50% and solutions are available on a companion website Presents a new section on engine performance testing and instrumentation Includes a new 10-Minute Quiz appendix (with 45 quizzes) that can be used as a continuous assessment and improvement tool in teaching/learning propulsion principles and concepts Includes a new appendix on Rules of Thumb and Trends in aircraft propulsion Aircraft Propulsion, Second Edition is a must-have textbook for graduate and undergraduate students, and is also an excellent source of information for researchers and practitioners in the aerospace and power industry.

Gas Turbines for Electric Power Generation This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshift and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.

Rocket Propulsion Elements This book describes recent technological developments in next generation nuclear reactors that have created renewed interest in nuclear process heat for industrial applications. The author’s discussion mirrors the industry’s emerging focus on combined cycle Next Generation Nuclear Plants’ (NGNP) seemingly natural fit in producing electricity and process heat for hydrogen production. To utilize this process heat, engineers must uncover a thermal device that can transfer the thermal energy from the NGNP to the hydrogen plant in the most performance efficient and cost effective way possible. This book is written around that vital quest, and the author describes the usefulness of the Intermediate Heat Exchanger (IHX) as a possible solution. The option to transfer heat and thermal energy via a single-phase forced convection loop
where fluid is mechanically pumped between the heat exchangers at the nuclear and hydrogen plants is presented, and challenges associated with this tactic are discussed. As a second option, heat pipes and thermosyphons, with their ability to transport very large quantities of heat over relatively long distance with small temperature losses, are also examined.

Gas Turbine Combined Cycle Power Plants The escalating use of aircraft in the 21st century demands a thorough understanding of engine propulsion concepts, including the performance of aero engines. Among other critical activities, gas turbines play an extensive role in electric power generation, and marine propulsion for naval vessels and cargo ships. In the most exhaustive volume to date, this text examines the foundation of aircraft propulsion: aerodynamics interwoven with thermodynamics, heat transfer, and mechanical design. With a finely focused approach, the author devotes each chapter to a particular engine type, such as ramjet and pulsejet, turbojet, and turbofan. Supported by actual case studies, he illustrates engine performance under various operating conditions. Part I discusses the history, classifications, and performance of air breathing engines. Beginning with Leonardo and continuing on to the emergence of the jet age and beyond, this section chronicles inventions up through the 20th century. It then moves into a detailed discussion of different engine types, including pulsejet, ramjet, single- and multi-spool turbojet, and turbofan in both subsonic and supersonic applications. The author discusses Vertical Take Off and Landing aircraft, and provides a comprehensive examination of hypersonic scramjet and turbo ramjet engines. He also analyzes the different types of industrial gas turbines having single- and multi-spool with intercoolers, regenerators, and reheaters. Part II investigates the design of rotating compressors and turbines, and non-rotating components, intakes, combustion chambers, and nozzles for all modern jet propulsion and gas turbine engine systems, along with their performance. Every chapter concludes with illustrative examples followed by a problems section; for greater clarity, some provide a listing of important mathematical relations.

Aircraft Propulsion Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.

Microgrid Design and Operation: Toward Smart Energy in Cities Industrial Gas Turbines: Performance and Operability explains important aspects of gas turbine performance such as performance deterioration, service life and engine emissions. Traditionally, gas turbine performance has been taught from a design perspective with insufficient attention paid to the operational issues of a specific site. Operators are not always sufficiently familiar with engine performance issues to resolve operational problems and optimise performance. Industrial Gas Turbines: Performance and Operability discusses the key factors determining the
performance of compressors, turbines, combustion and engine controls. An accompanying engine simulator CD illustrates gas turbine performance from the perspective of the operator, building on the concepts discussed in the text. The simulator is effectively a virtual engine and can be subjected to operating conditions that would be dangerous and damaging to an engine in real-life conditions. It also deals with issues of engine deterioration, emissions and turbine life. The combined use of text and simulators is designed to allow the reader to better understand and optimise gas turbine operation. Discusses the key factors in determining the performance of compressors, turbines, combustion and engine controls. Explains important aspects of gas and turbine performance such as service life and engine emissions. Accompanied by CD illustrating gas turbine performance, building on the concepts discussed in the text.

Jet Propulsion A significant addition to the literature on gas turbine technology, the second edition of Gas Turbine Performance is a lengthy text covering product advances and technological developments. Including extensive figures, charts, tables and formulae, this book will interest everyone concerned with gas turbine technology, whether they are designers, marketing staff or users.

Essentials of Oil and Gas Utilities

The Gas Turbine Handbook

Industrial Gas Turbines Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book’s first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion. The rocket propulsion section extends the text’s coverage so that both Aerospace and Aeronautical topics can be studied and compared. Numerous updates have been made to reflect the latest advances in turbine engines, fuels, and combustion. The text is now divided into three parts, the first two devoted to air breathing engines, and the third covering non-air breathing or rocket engines.

Hybrid Systems Based on Solid Oxide Fuel Cells "Aircrarft Propulsion presents thorough coverage of fundamental concepts along with numerous detailed examples and extensive illustrations. This accessible introduction first discusses compressible flow with heat and friction as well as engine thrust and performance parameters. Readers will then learn about aircraft gas turbine engine cycles followed by aircraft engine components. And they'll discover the aerodynamics and performance of centrifugal compressors." -- Publisher description.
Aircraft Propulsion and Gas Turbine Engines Integrated Gasification Combined Cycle (IGCC) Technologies discusses this innovative power generation technology that combines modern coal gasification technology with both gas turbine and steam turbine power generation, an important emerging technology which has the potential to significantly improve the efficiencies and emissions of coal power plants. The advantages of this technology over conventional pulverized coal power plants include fuel flexibility, greater efficiencies, and very low pollutant emissions. The book reviews the current status and future developments of key technologies involved in IGCC plants and how they can be integrated to maximize efficiency and reduce the cost of electricity generation in a carbon-constrained world. The first part of this book introduces the principles of IGCC systems and the fuel types for use in IGCC systems. The second part covers syngas production within IGCC systems. The third part looks at syngas cleaning, the separation of CO2 and hydrogen enrichment, with final sections describing the gas turbine combined cycle and presenting several case studies of existing IGCC plants. Provides an in-depth, multi-contributor overview of integrated gasification combined cycle technologies Reviews the current status and future developments of key technologies involved in IGCC plants Provides several case studies of existing IGCC plants around the world

Gas Turbine Theory With the changing technological environment, the aircraft industry has experienced an exponential growth. Owing to the escalating use of aircrafts nowadays, it is required for the professionals and learners of the field to have conceptual understanding of propulsion systems and ability to apply these concepts in a way to develop aircrafts that make them fly further, higher and faster. Designed as a text for the undergraduate students of Aerospace and Aeronautical Engineering, the book covers all the basic concepts relating to propulsion in a clear and concise manner. Primary emphasis is laid on making the understanding of theoretical concepts as simple as possible by using lucid language and avoiding much complicated mathematical derivations. Thus, the book presents the concepts of propulsion in a style that even the beginners can understand them easily. The text commences with the basic pre-requisites for propulsion system followed by the fundamental thermodynamic aspects, laws and theories. Later on, it explains the gas turbine engine followed by rocket engine and ramjet engine. Finally, the book discusses the introductory part of an advanced topic, i.e., pulse detonation engine.

Experimental and Computational Fluid Mechanics When the First Edition of this book was written in 1951, the gas turbine was just becoming established as a powerplant for military aircraft. It took another decade before the gas turbine was introduced to civil aircraft, and this market developed so rapidly that the passenger liner was rendered obsolete. Other markets like naval propulsion, pipeline compression and electrical power applications grew steadily. In recent years the gas turbine, in combination with the steam turbine, has played
an ever-increasing role in power generation. Despite the rapid advances in both output and efficiency, the basic theory of the gas turbine has remained unchanged. The layout of this new edition is broadly similar to the original, but greatly expanded and updated, comprising an outline of the basic theory, aerodynamic design of individual components, and the prediction of off-design performance. The addition of a chapter devoted to the mechanical design of gas turbines greatly enhances the scope of the book. Descriptions of engine developments and current markets make this book useful to both students and practising engineers.

Gas Turbine Theory This book was developed directly from a series of Solar Turbines Incorporated internal short courses that were presented to an audience with a wide range of technical backgrounds, not necessarily related to turbomachinery. Thus, functional principles and physical understanding are emphasized, rather than the derivation of complicated mathematical equations. While the focus of this book is gas turbine theory, it is not intended to provide an in-depth knowledge of gas turbine aerodynamics or thermodynamics, nor is it intended to make the reader an expert in the field of turbomachinery. Readers will benefit from the many topics and theories that pertain to the subject matter. The text emphasizes simplified explanations of complex physical theories. Hopefully, readers will utilize this book to develop an appreciation of the many engineering disciplines that are involved in the design and analysis of gas turbines. Readers are also encouraged to further investigate a wide range of topics by studying more specific, subject-matter literature.

Fundamentals of Aircraft and Rocket Propulsion This book covers the design, analysis, and optimization of the cleanest, most efficient fossil fuel-fired electric power generation technology at present and in the foreseeable future. The book contains a wealth of first principles-based calculation methods comprising key formulae, charts, rules of thumb, and other tools developed by the author over the course of 25+ years spent in the power generation industry. It is focused exclusively on actual power plant systems and actual field and/or rating data providing a comprehensive picture of the gas turbine combined cycle technology from performance and cost perspectives. Material presented in this book is applicable for research and development studies in academia and government/industry laboratories, as well as practical, day-to-day problems encountered in the industry (including OEMs, consulting engineers and plant operators).

Gas Turbines for Electric Power Generation This book is an introduction to the design of modern civil and military jet engines using engine design projects.

Radial Flow Turbocompressors Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations presents a detailed and comprehensive treatment of performance analysis techniques for jet
transport airplanes. Uniquely, the book describes key operational and regulatory procedures and constraints that directly impact the performance of commercial airliners. Topics include: rigid body dynamics; aerodynamic fundamentals; atmospheric models (including standard and non-standard atmospheres); height scales and altimetry; distance and speed measurement; lift and drag and associated mathematical models; jet engine performance (including thrust and specific fuel consumption models); takeoff and landing performance (with airfield and operational constraints); takeoff climb and obstacle clearance; level, climbing and descending flight (including accelerated climb/descent); cruise and range (including solutions by numerical integration); payload-range; endurance and holding; maneuvering flight (including turning and pitching maneuvers); total energy concepts; trip fuel planning and estimation (including regulatory fuel reserves); en route operations and limitations (e.g. climb-speed schedules, cruise ceiling, ETOPS); cost considerations (e.g. cost index, energy cost, fuel tankering); weight, balance and trim; flight envelopes and limitations (including stall and buffet onset speeds, V-n diagrams); environmental considerations (viz. noise and emissions); aircraft systems and airplane performance (e.g. cabin pressurization, de-/anti icing, and fuel); and performance-related regulatory requirements of the FAA (Federal Aviation Administration) and EASA (European Aviation Safety Agency). Key features: Describes methods for the analysis of the performance of jet transport airplanes during all phases of flight Presents both analytical (closed form) methods and numerical approaches Describes key FAA and EASA regulations that impact airplane performance Presents equations and examples in both SI (Système International) and USC (United States Customary) units Considers the influence of operational procedures and their impact on airplane performance Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations provides a comprehensive treatment of the performance of modern jet transport airplanes in an operational context. It is a must-have reference for aerospace engineering students, applied researchers conducting performance-related studies, and flight operations engineers.

Aircraft Propulsion and Gas Turbine Engines From the early days of the gas turbine as a prime mover to the current interest in combined heat and power generation, and the need to reduce emissions, this volume is suitable as a course book for undergraduates and graduates.

Proceedings of the National Aerospace Propulsion Conference In this essential reference, both students and practitioners in the field will find an accessible discussion of electric power generation with gas turbine power plants, using quantitative and qualitative tools. Beginning with a basic discussion of thermodynamics of gas turbine cycles from a second law perspective, the material goes on to cover with depth an analysis of the translation of the cycle to a final product, facilitating quick estimates. In order to provide readers with the
knowledge they need to design turbines effectively, there are explanations of simple and combined cycle design considerations, and state-of-the-art, performance prediction and optimization techniques, as well as rules of thumb for design and off-design performance and operational flexibility, and simplified calculations for myriad design and off-design performance. The text also features an introduction to proper material selection, manufacturing techniques, and construction, maintenance, and operation of gas turbine power plants.

Aircraft Propulsion An introduction to the theory and engineering practice that underpins the component design and analysis of radial flow turbocompressors. Drawing upon an extensive theoretical background and years of practical experience, the authors provide descriptions of applications, concepts, component design, analysis tools, performance maps, flow stability, and structural integrity, with illustrative examples. Features wide coverage of all types of radial compressor over many applications unified by the consistent use of dimensional analysis. Discusses the methods needed to analyse the performance, flow, and mechanical integrity that underpin the design of efficient centrifugal compressors with good flow range and stability. Includes explanation of the design of all radial compressor components, including inlet guide vanes, impellers, diffusers, volutes, return channels, de-swirl vanes and side-streams. Suitable as a reference for advanced students of turbomachinery, and a perfect tool for practising mechanical and aerospace engineers already within the field and those just entering it.

Gas Turbine Theory A comprehensive guide to the modelling and design of solid oxide fuel cell hybrid power plants This book explores all technical aspects of solid oxide fuel cell (SOFC) hybrid systems and proposes solutions to a range of technical problems that can arise from component integration. Following a general introduction to the state-of-the-art in SOFC hybrid systems, the authors focus on fuel cell technology, including the components required to operate with standard fuels. Micro-gas turbine (mGT) technology for hybrid systems is discussed, with special attention given to issues related to the coupling of SOFCs with mGTs. Throughout the book emphasis is placed on dynamic issues, including control systems used to avoid risk conditions. With an eye to mitigating the high costs and risks incurred with the building and use of prototype hybrid systems, the authors demonstrate a proven, economically feasible approach to obtaining important experimental results using simplified plants that simulate both generic and detailed system-level behaviour using emulators. Computational models and experimental plants are developed to support the analysis of SOFC hybrid systems, including models appropriate for design, development and performance analysis at both component and system levels. Presents models for a range of size units, technology variations, unit coupling dynamics and start-up and shutdown behaviours Focuses on SOFCs integration with mGTs in light of key
constraints and risk avoidance issues under steady-state conditions and during transient operations Identifies interaction and coupling problems within the GT/SOFC environment, including exergy analysis and optimization Demonstrates an economical approach to obtaining important experimental results while avoiding high-cost components and risk conditions Presents analytical/computational and experimental tools for the efficient design and development of hardware and software systems Hybrid Systems Based on Solid Oxide Fuel Cells: Modelling and Design is a valuable resource for researchers and practicing engineers involved in fuel cell fundamentals, design and development. It is also an excellent reference for academic researchers and advanced-level students exploring fuel cell technology.

Integrated Gasification Combined Cycle (IGCC) Technologies "In recent years the gas turbine, in combination with the steam turbine, has played an ever-increasing role in power generation. Despite the rapid advances in both output and efficiency, the basic theory of the gas turbine has remained unchanged. The layout of this new edition is broadly similar to the original, but greatly expanded and updated, comprising an outline of the basic theory, aerodynamic design of individual components, and the prediction of off-design performance. The addition of a chapter devoted to the mechanical design of gas turbines greatly enhances the scope of the book."--Publisher's website.

Propulsion and Power The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.

Performance of the Jet Transport Airplane Combined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants. After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined
cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems. With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) systems and integrated gasification combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems

Advanced Energy Systems, Second Edition Every oil and gas refinery or petrochemical plant requires sufficient utilities support in order to maintain a successful operation. A comprehensive utilities complex must exist to distribute feedstocks, discharge waste streams, and remains an integrated part of the refinery’s infrastructure. Essentials of Oil and Gas Utilities explains these support systems and provides essential information on their essential requirements and process design. This guide includes water treatment plants, condensate recovery plants, high pressure steam boilers, induced draft cooling towers, instrumentation/plant air compressors, and units for a refinery fuel gas and oil systems. In addition, the book offers recommendations for equipment and flow line protection against temperature fluctuations and the proper preparation and storage of strong and dilute caustic solutions. Essentials of Oil and Gas Utilities is a go-to resource for engineers and refinery personnel who must consider utility system design parameters and associated processes for the successful operations of their plants. Discusses gaseous and liquid fuel systems used to provide heat for power generation, steam production and process requirements Provides a design guide for compressed air systems used to provide air to the various points of application in sufficient quantity and quality and with adequate pressure for efficient operation of air tools or other pneumatic devices. Explains the water systems utilized in plant operations which include water treatment systems or raw water and plant water system; cooling water circuits for internal combustion engines, reciprocating compressors, inter- cooling and after-cooling facilities; and "Hot Oil" and "Tempered Water" systems

Gas Turbine Performance
AIRCRAFT PROPULSION A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems. Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries. In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design. Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques. Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References. Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.

Category Theory for the Sciences This second edition to a popular first provides a comprehensive, fully updated treatment of advanced conventional power generation and cogeneration plants, as well as alternative energy technologies. Organized into two parts: Conventional Power Generation Technology and Renewable and Emerging Clean Energy Systems, the book covers the fundamentals, analysis, design, and practical aspects of advanced energy systems, thus supplying a strong theoretical background for highly efficient energy conversion. New and enhanced topics include: Large-scale solar thermal electric and photovoltaic (PV) plants Advanced supercritical and ultra-supercritical steam power generation technologies Advanced coal- and gas-fired power plants (PP) with high conversion efficiency and low environmental impact Hybrid/integrated (i.e., fossil fuel + REN) power generation technologies, such as integrated solar combined-cycle (ISCC) Clean energy technologies, including “clean coal,” H2 and fuel cell, plus integrated power and cogeneration plants...
(i.e., conventional PP + fuel cell stacks) Emerging trends, including magnetohydrodynamic (MHD)-generator and controlled thermonuclear fusion reactor technologies with low/zero CO2 emissions. Large capacity offshore and on-land wind farms, as well as other renewable (REN) power generation technologies using hydro, geothermal, ocean, and bio energy systems. Containing over 50 solved examples, plus problem sets, full figures, appendices, references, and property data, this practical guide to modern energy technologies serves energy engineering students and professionals alike in design calculations of energy systems.

Advanced Energy Systems, Second Edition This comprehensive, best-selling reference provides the fundamental information you’ll need to understand both the operation and proper application of all types of gas turbines. The full spectrum of hardware, as well as typical application scenarios are fully explored, along with operating parameters, controls, inlet treatments, inspection, troubleshooting, and more. The second edition adds a new chapter on gas turbine noise control, as well as an expanded section on use of inlet cooling for power augmentation and NOx control. The author has provided many helpful tips that will enable diagnosis of problems in their early stages and analysis of failures to prevent their recurrence. Also treated are the effects of the external environment on gas turbine operation and life, as well as the impact of the gas turbine on its surrounding environment.

Basic Concepts in Turbomachinery This book collects invited lectures and selected contributions presented at the Enzo Levi and XVIII Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2012. It is intended for fourth-year undergraduate and graduate students, and for scientists in the fields of physics, engineering and chemistry with an interest in Fluid Dynamics from experimental, theoretical and computational points of view. The invited lectures are introductory in nature and avoid the use of complicated mathematics. The other selected contributions are also suitable for fourth-year undergraduate and graduate students. The Fluid Dynamics applications include oceanography, multiphase flows, convection, diffusion, heat transfer, rheology, granular materials, viscous flows, porous media flows and astrophysics. The material presented in the book includes recent advances in experimental and computational fluid dynamics and is well-suited to both teaching and research.

Energy Conversion

Engineering Thermodynamics Work and Heat Transfer This volume presents selected papers presented during the National Aerospace Propulsion Conference (NAPC) held at Indian Institute of Technology Kharagpur. It brings together contributions from the entire propulsion community, spanning air-breathing and non-air-
breathing propulsion. The papers cover aerospace propulsion-related topics, and discuss relevant research advances made in this field. It will be of interest to researchers in industry and academia working on gas turbine, rocket, and jet engines.

Combined Cycle Systems for Near-Zero Emission Power Generation This book presents selected papers presented in the Symposium on Applied Aerodynamics and Design of Aerospace Vehicles (SAROD 2018), which was jointly organized by Aeronautical Development Agency (the nodal agency for the design and development of combat aircraft in India), Gas-Turbine Research Establishment (responsible for design and development of gas turbine engines for military applications), and CSIR-National Aerospace Laboratories (involved in major aerospace programs in the country such as SARAS program, LCA, Space Launch Vehicles, Missiles and UAVs). It brings together experiences of aerodynamicists in India as well as abroad in Aerospace Vehicle Design, Gas Turbine Engines, Missiles and related areas. It is a useful volume for researchers, professionals and students interested in diversified areas of aerospace engineering.

Fluid Mechanics, Thermodynamics of Turbomachinery This handbook surveys the range of methods and fuel types used in generating energy for industry, transportation, and heating and cooling of buildings. Solar, wind, biomass, nuclear, geothermal, ocean and fossil fuels are discussed and compared, and the thermodynamics of energy conversion is explained. Appendices are provided with fully updated data. Thoroughly revised, this second edition surveys the latest advances in energy conversion from a wide variety of currently available energy sources. It describes energy sources such as fossil fuels, biomass (including refuse-derived biomass fuels), nuclear, solar radiation, wind, geothermal, and ocean, then provides the terminology and units used for each energy resource and their equivalence. It includes an overview of the steam power cycles, gas turbines, internal combustion engines, hydraulic turbines, Stirling engines, advanced fossil fuel power systems, and combined-cycle power plants. It outlines the development, current use, and future of nuclear power.

Gas Turbine Theory With the growth of renewable energy sources, microgrids have become a key component in the distribution of power to localized areas while connected to the traditional grid or operating in a disconnected island mode. Based on the extensive real-world experience of the authors, this cutting-edge resource provides a basis for the design, installation, and day-by-day management of microgrids. Professionals find coverage of the critical aspects they need to understand, from the initial planning and the selection of the most appropriate technologies and equipment, to optimal management and real-time control. Moreover, this forward-looking book places emphasis on new architectures of the energy systems of the
future. Written in accessible language with practical examples, the book explains advanced topics such as optimization algorithms for energy management systems, control issues for both on-grid and island mode, and microgrid protection. Practitioners are also provided with a complete vision for the deployment of the microgrid in smart cities.

Engineering Optimization This second edition to a popular first provides a comprehensive, fully updated treatment of advanced conventional power generation and cogeneration plants, as well as alternative energy technologies. Organized into two parts: Conventional Power Generation Technology and Renewable and Emerging Clean Energy Systems, the book covers the fundamentals, analysis, design, and practical aspects of advanced energy systems, thus supplying a strong theoretical background for highly efficient energy conversion. New and enhanced topics include: Large-scale solar thermal electric and photovoltaic (PV) plants Advanced supercritical and ultra-supercritical steam power generation technologies Advanced coal- and gas-fired power plants (PP) with high conversion efficiency and low environmental impact Hybrid/integrated (i.e., fossil fuel + REN) power generation technologies, such as integrated solar combined-cycle (ISCC) Clean energy technologies, including "clean coal," H2 and fuel cell, plus integrated power and cogeneration plants (i.e., conventional PP + fuel cell stacks) Emerging trends, including magnetohydrodynamic (MHD)-generator and controlled thermonuclear fusion reactor technologies with low/zero CO2 emissions Large capacity offshore and on-land wind farms, as well as other renewable (REN) power generation technologies using hydro, geothermal, ocean, and bio energy systems Containing over 50 solved examples, plus problem sets, full figures, appendices, references, and property data, this practical guide to modern energy technologies serves energy engineering students and professionals alike in design calculations of energy systems.

Introduction to Gas Turbine Theory An introduction to category theory as a rigorous, flexible, and coherent modeling language that can be used across the sciences. Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences. Information is inherently dynamic; the same ideas can be organized and reorganized in countless ways, and the ability to translate between such organizational structures is becoming increasingly important in the sciences. Category theory offers a unifying framework for information modeling that can facilitate the translation of knowledge between disciplines. Written in an engaging and straightforward style, and assuming little background in mathematics, the book is rigorous but accessible to non-mathematicians. Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader
to notions that are fundamental in mathematics: monoids, groups, orders, and graphs—categories in disguise. After explaining the “big three” concepts of category theory—categories, functors, and natural transformations—the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions. Category Theory for the Sciences is intended to create a bridge between the vast array of mathematical concepts used by mathematicians and the models and frameworks of such scientific disciplines as computation, neuroscience, and physics.

Modern Gas Turbine Systems Modern gas turbine power plants represent one of the most efficient and economic conventional power generation technologies suitable for large-scale and smaller scale applications. Alongside this, gas turbine systems operate with low emissions and are more flexible in their operational characteristics than other large-scale generation units such as steam cycle plants. Gas turbines are unrivalled in their superior power density (power-to-weight) and are thus the prime choice for industrial applications where size and weight matter the most. Developments in the field look to improve on this performance, aiming at higher efficiency generation, lower emission systems and more fuel-flexible operation to utilise lower-grade gases, liquid fuels, and gasified solid fuels/biomass. Modern gas turbine systems provides a comprehensive review of gas turbine science and engineering. The first part of the book provides an overview of gas turbine types, applications and cycles. Part two moves on to explore major components of modern gas turbine systems including compressors, combustors and turbogenerators. Finally, the operation and maintenance of modern gas turbine systems is discussed in part three. The section includes chapters on performance issues and modelling, the maintenance and repair of components and fuel flexibility. Modern gas turbine systems is a technical resource for power plant operators, industrial engineers working with gas turbine power plants and researchers, scientists and students interested in the field. Provides a comprehensive review of gas turbine systems and fundamentals of a cycle Examines the major components of modern systems, including compressors, combustors and turbines Discusses the operation and maintenance of component parts

Nuclear Energy for Hydrogen Generation through Intermediate Heat Exchangers

Copyright code: 5cc3a40a352ce6e480d92a8350f44163