Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.

The Lattice Boltzmann Method

Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer's silicon test tube, there is need for precise and computable process descriptions. The scientific fields of Mathematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discretized for efficient solution on a computer, leading to valuable tools for simulation of natural and man-made processes.
processes. Numerical solution of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model's complexity and the number of data points used for the computations. Therefore, computational scientists tend to fill even the largest and most powerful computers they can get access to, either by increasing the size of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems cannot be solved by one single computer, but calls for parallel computing.

This thesis presents the extension of the lattice Boltzmann equation (LBE) to several well-known flows. First, the flow over a cylinder is studied using the LBE and the numerical predictions are shown to compare well with those obtained using a stylised finite volume method. A clear and formal perturbation analysis of the generalised LBE is also presented. A LBE for axisymmetric flows is developed, the precise form of which is derived through a Chapman-Enskog analysis so that the additional axisymmetric contributions to the Navier-Stokes equation are furnished when written in the cylindrical polar coordinate system. Stokes' flow over a sphere is studied and excellent agreement is found between the numerical and analytical predictions. A lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio is developed. In the macroscopic limit this model is shown to recover the Navier-Stokes equations for two-phase flow. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. A number of numerical simulations are presented and shown to be in good agreement with analytical results. Finally, an axisymmetric multiphase lattice Boltzmann model has been proposed. This model is easy to implement and some test cases have been performed to demonstrate its capabilities. A review of the extension of the lattice Boltzmann equation to viscoelasticity is also presented.

The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geometries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the microscopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The averaged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very promising research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows.

The Lattice Boltzmann Method (LBM) is a powerful technique for the computation of a wide variety of complex fluid flow problems including single and multiphase fluids in complex geometries. Historically, the Lattice Boltzmann equation for modeling hydrodynamics originated from the lattice gas cellular automata (LGCA), which are discrete models based on particles that move on a lattice. The LBM is different from traditional computational fluid dynamics (CFD) approaches, which solve the Navier-Stokes equations directly.
Read Book Lattice Boltzmann Method And Its Applications In Engineering Advances In Computational Fluid Dynamics

The Lattice Boltzmann Method (LBM) is a powerful computational tool in fluid dynamics that has gained increasing attention in recent years. It models fluids as a discrete distribution of particles, which perform collision and streaming processes on a lattice mesh. During the past decade, significant advancements have been made in both the theoretical understanding and algorithmic development of the LBM. This method has become more widely used in computational fluid dynamics due to its simplicity, scalability, and ability to handle complex geometries.

However, the LBM's explicit time-integration approach can be inefficient for steady-state simulations or time-dependent problems with large separations in time and spatial scales. To address this issue, a time-implicit multigrid LBE scheme has been developed. This scheme allows for more efficient time-dependent simulations by utilizing unconditionally large time steps. Numerical experiments and comparisons with the original explicit LBE approach demonstrate its improved efficiency and temporal accuracy.

In this dissertation, the LBM is applied to study the interaction between cells and blood plasma, which is crucial for understanding human disease and health. The LBM is employed as a Navier-Stokes fluid solver due to its capability in modeling single and multiphase flows, handling complex geometries, and facilitating parallel computing. It is also valuable for modeling large deformations of solid objects. The Immersed Boundary Method is used to couple the fluid and solid phases, providing a solution to the problem of expensive mesh updating in traditional Arbitrary Lagrangian Eulerian approaches.

The Lattice Boltzmann Method is also applied to study the aeroacoustics of volcanic eruptions, where the method can systematically derive lattice Boltzmann models for non-ideal gases from the Enskog equation. This approach provides a unified theory for lattice Boltzmann models of non-ideal gases. The lattice Boltzmann equation is systematically obtained by discretizing the Enskog equation in phase space and time. The derived lattice Boltzmann model is thermodynamically consistent up to the order of discretization error. Existing lattice Boltzmann models for non-ideal gases are analyzed and compared in detail, helping to improve the model's accuracy and efficiency.

High Performance Computing and Applications

This book is an introduction to the Lattice Boltzmann (LB) method, a computational fluid dynamics technique that is gaining attention due to its simplicity, scalability, and ability to handle complex geometries. The book covers the method's background, fundamental theory, advanced extensions, and implementation details. Essential paragraphs in each chapter are highlighted to aid beginners, and special "in a nutshell" sections are included to summarize key results. Exercises are integrated throughout the text, and frequently asked questions are addressed. The book also includes example codes demonstrating efficient implementation of the LB method on various hardware platforms, including multi-core processors and graphics processing units.
The book introduces the fundamentals and applications of the lattice Boltzmann method (LBM) for incompressible viscous flows. It is written clearly and easy to understand for graduate students and researchers. The book is organized as follows. In Chapter 1, the SRT- and MRT-LBM schemes are derived from the discrete Boltzmann equation for lattice gases and the relation between the LBM and the Navier-Stokes equation is explained by using the asymptotic expansion (not the Chapman-Enskog expansion). Chapter 2 presents the lattice kinetic scheme (LKS) which is an extension method of the LBM and can save memory because of needlessness for storing the velocity distribution functions. In addition, an improved LKS which can stably simulate high Reynolds number flows is presented. In Chapter 3, the LBM combined with the immersed boundary method (IB-LBM) is presented. The IB-LBM is well suitable for moving boundary flows. In Chapter 4, the two-phase LBM is explained from the point of view of the difficulty in computing two-phase flows with large density ratio. Then, a two-phase LBM for large density ratios is presented. In Appendix, sample codes (available for download) are given for users.
This research project presents an overview of the Lattice Boltzmann Method (LBM), an alternative numerical approach to conventional CFD. LBM has increased in popularity among the scientific community in recent years, due to its promising abilities. Namely, it claims to achieve the same level of accuracy as that of traditional CFD, while offering new benefits such as easy parallelization and the possibility of implementing complex and multiscale flows. Unlike conventional CFD which focuses on the numerical solution of the Navier Stokes Equations, the Lattice Boltzmann Method focuses on microscopic particle interactions to represent the macroscopic behaviour of the fluid. The aim of this project is to appraise the ability of the Lattice Boltzmann Method to accurately simulate incompressible flows and to analyse its accuracy performance and stability. This report presents the theoretical basis of this novel method, as well as a verification of its convergence results through some examples. These examples are implemented through an open-source code (Palabos). This project not only focuses on matching the LBM solutions with analytical or existing solutions, but it also focuses on studying the effect that the parameters of the model have on the results provided, on stability and on computational cost. The results and their analysis show that LBM is an accurate method for representing incompressible flows. The report also describes how to implement the Lattice Boltzmann Method and suggests some ways to continue the work further.
Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

The Lattice Boltzmann Equation

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

Multiphase Lattice Boltzmann Methods

Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the model most suitable for the problems they are interested in. The book is targeted at graduate students and researchers who plan to investigate multiphase flows using LBMs. Throughout the text most of the popular multiphase LBMs are analyzed both theoretically and through numerical simulation. The authors present many of the mathematical derivations of the models in greater detail than is
Current developments in computational fluid dynamics (CFD) based on kinetic theories, including flux reconstruction strategies for simulating complex incompressible and compressible flows, are well-documented in this unique compendium. It introduces lattice Boltzmann (LBM) and gas kinetic flux solvers (GKFS) for simulating such flows. These methods combine the advantages of both Navier-Stokes (N-S) solvers and kinetic solvers, offering detailed derivations, evaluations, and applications, as well as discussing their advantages over conventional flux reconstruction strategies. The book serves as a valuable resource for scholars, researchers, professionals, and students interested in CFD methods and numerical simulations.

Lattice Boltzmann method (LBM) is a relatively new simulation technique that has attracted interest from computational physicists due to its ability to model complex fluid systems. Unlike traditional CFD methods that solve conservation equations numerically, LBM models fluid with fictive particles that perform consecutive propagation and collision processes on a discrete lattice mesh. This book covers the fundamental and practical application of LBM, starting with the theory, basic models, initial and boundary conditions, theoretical analysis, and improved models. It then explores applications in various aspects of computational fluid dynamic engineering, such as thermo-hydrodynamics, multifluid/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.

The third volume of the series focuses on the lattice Boltzmann methods, advanced numerical techniques for physico-chemical flows, fluid structure interaction, and practical applications of these phenomena to real-world problems.
LBE simulation results for a non-spherical particle in Couette flow and 16 particles in sedimentation in fluid. We compare the LBE simulation of the three-dimensional homogeneous isotropic turbulence flow in a periodic cubic box of the size 128^3 with the pseudo-spectral simulation, and find that the two results agree well with each other but the LBE method is more dissipative than the pseudo-spectral method in small scales, as expected. Luo, Li-Shi and Qi, Dewei and Wang, Lian-Ping and Bushnell, Dennis M. (Technical Monitor) Langley Research Center NASA/CR-2002-211659, NAS 1.26:211659, ICASE-2002-19

The Lattice Boltzmann Equation

An introductory textbook to Lattice Boltzmann methods in computational fluid dynamics, aimed at a broad audience of scientists working with flowing matter. LB has known a burgeoning growth of applications, especially in connection with the simulation of complex flows, and also on the methodological side.

Lattice-Gas Cellular Automata and Lattice Boltzmann Models

An Introduction to Lattice Boltzmann Method

Lattice Boltzmann Method introduces the lattice Boltzmann method (LBM) for solving transport phenomena flow, heat and mass transfer in a systematic way. Providing explanatory computer codes throughout the book, the author guides readers through many practical examples, such as: flow in isothermal and non-isothermal lid driven cavities; flow over obstacles; forced flow through a heated channel; conjugate forced convection; and natural convection. Diffusion and advection-diffusion equations are discussed with applications and examples, and complete computer codes accompany the coverage of single and multi-relaxation-time methods. Although the codes are written in FORTRAN, they can be easily translated to other languages, such as C++. The codes can also be extended with little effort to multi-phase and multi-physics, if the reader knows the physics of the problem. Readers with some experience of advanced mathematics and physics will find Lattice Boltzmann Method a useful and easy-to-follow text. It has been written for those who are interested in learning and applying the LBM to engineering and industrial problems and it can also serve as a textbook for advanced undergraduate or graduate students who are studying computational transport phenomena.

Appraisal of Flow Simulation by the Lattice Boltzmann Method

Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions. Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; and used in conjunction with the suppression of coalescence for investigating the rheology of colloids and microvasculature blood flow. The presented LBM model provides a flexible numerical platform consisting of various modules that could be used separately or in combination for the study of a variety of colloids and biological flow deformation problems.

The Lattice Boltzmann Method for Complex Flows

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and...
Read Book Lattice Boltzmann Method And Its Applications In Engineering Advances In Computational Fluid Dynamics

The Lattice Boltzmann Method (LBM) is a promising method for the numerical solution of nonlinear partial differential equations. It is particularly useful in fluid dynamics due to its ability to model multiphase flows and thermal effects. This method has gained significant interest due to its computational efficiency and the ability to handle complex geometries.

Lattice Boltzmann Method

The LBM was developed in the late 1970s and has since been applied to a wide range of problems in fluid mechanics. The method is based on the Boltzmann equation, which describes the evolution of a particle distribution function in phase space.

Variations of the LBM

- **Regularized Lattice Boltzmann Model (RLBM)**: This model uses non-equilibrium parts of the stress tensor to improve accuracy.
- **Multi-Relaxation Time Lattice Boltzmann Model (MRT-LBM)**: This model converts from real space to momentum space, allowing for more flexibility in the relaxation times.
- **Entropic Lattice Boltzmann Model (ELBM)**: This model uses the entropy equation to correct for inconsistencies in the model.

These variations are designed to overcome shortcomings in the standard LBM. Extensions of the LBM include handling external forces, multiphase flows, and thermal effects. Various types of boundary conditions are modeled using different approaches.

Lattice Boltzmann Modeling

This book constitutes the thoroughly refereed post-conference proceedings of the Second International Conference on High Performance Computing and Applications, HPCA 2009, held in Shanghai, China, in August 2009. The 71 revised papers presented together with 10 invited presentations were carefully selected from 324 submissions. The papers cover topics such as numerical algorithms and solutions; high performance and grid computing; novel approaches to high performance computing; massive data storage and processing; and hardware acceleration.

The Lattice Boltzmann Methods and Their Applications to Fluid Flows presents a comprehensive review of all popular multiphase LBM methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase LBM methods. The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the model most suitable for the problems they are interested in. The book is targeted at graduate students and researchers who plan to investigate multiphase flows using LBMs. Throughout the text most of the popular multiphase LBMs are analyzed both theoretically and through numerical simulation. The authors present many of the mathematical derivations of the models in greater detail than is currently found in the existing literature. The approach to understanding and classifying the various models is principally based on simulation compared against analytical and observational results and the discovery of undesirable terms in the derived macroscopic equations and sometimes their correction. A repository of FORTRAN codes for multiphase LBM models is also provided.
This book introduces readers to the lattice Boltzmann method (LBM) for solving transport phenomena, flow, heat and mass transfer in a systematic way. Providing explanatory computer codes throughout the book, the author guides readers through many practical examples, such as: flow in isothermal and non-isothermal lid-driven cavities; flow over obstacles; forced flow through a heated channel; conjugate forced convection; and natural convection. Diffusion and advection diffusion equations are discussed, together with applications and examples, and complete computer codes accompany the sections on single and multi-relaxation-time methods. The codes are written in MatLab. However, the codes are written in a way that can be easily converted to other languages, such as FORTRAN, Python, Julia, etc. The codes can also be extended with little effort to multi-phase and multi-physics, provided the physics of the respective problem are known. The second edition of this book adds new chapters, and includes new theory and applications. It discusses a wealth of practical examples, and explains LBM in connection with various engineering topics, especially the transport of mass, momentum, energy and molecular species. This book offers a useful and easy-to-follow guide for readers with some prior experience with advanced mathematics and physics, and will be of interest to all researchers and other readers who wish to learn how to apply LBM to engineering and industrial problems. It can also be used as a textbook for advanced undergraduate or graduate courses on computational transport phenomena.

Lattice Boltzmann Method for the Simulation of Viscoelastic Fluid Flows

Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.

Accelerated Lattice Boltzmann Model for Colloidal Suspensions

This unique professional volume is about the recent advances in the lattice Boltzmann method (LBM). It introduces a new methodology, namely the simplified and highly stable lattice Boltzmann method (SHSLBM), for constructing numerical schemes within the lattice Boltzmann framework. Through rigorous mathematical derivations and abundant numerical validations, the SHSLBM is found to outperform the conventional LBM in terms of memory cost, boundary treatment and numerical stability. This must-have title provides every necessary detail of the SHSLBM and sample codes for implementation. It is a useful handbook for scholars, researchers, professionals and students who are keen to learn, employ and further develop this novel numerical method.

Lattice Boltzmann Method and Immersed Boundary Method for the Simulation of Viscous Fluid Flows

Lattice Boltzmann Method and Its Applications in Soft Matter